
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

Solution Languages: Easing Pattern Composition
in Different Domains

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Frank Leymann

The full version of this paper can be retrieved from
http://www.iariajournals.org/software

© 2017 IARIA

@article{Falkenthal2017,
author = {Falkenthal, Michael and Barzen, Johanna and Breitenb\{"u}ucher,

Uwe and Leymann, Frank},
title = {Solution Languages: Easing Pattern Composition in Different

Domains},
journal = {International Journal on Advances in Software},
year = {2017},
pages = {263--274},
publisher = {IARIA}

}

:

Institute of Architecture of Application Systems

Solution Languages:

Easing Pattern Composition in Different Domains

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, and Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

Email: {lastname}@iaas.uni-stuttgart.de

Abstract—Patterns and pattern languages are a pervasive means

to capture proven solutions for frequently recurring problems.

However, there is often a lack of concrete guidance to apply

them to concrete use cases at hand. Since patterns capture the

essence of many solutions, which have practically proven to

solve a problem properly, the knowledge about applying them to

concrete individual problems at hand is lost during the authoring

process. This is because information about how to apply a pattern

in particular fields, technologies, or environmental contexts is

typically lost due to the abstract nature of the solution of a

pattern. In our previous works, we presented (i) the concept of

linking concrete solutions to patterns in order to ease the pattern

application and (ii) how these concrete solutions can be organized

into so-called Solution Languages. In this work, we build upon

these concepts and show the feasibility of Solution Languages

via their application in different domains. Finally, we show how

Solution Languages can be authored via a wiki-based prototype.

Keywords–Pattern Language; Solution Language; Pattern Appli-

cation; Solution Selection; Digital Humanities.

I. INTRODUCTION

In many domains, expertise and proven knowledge about
how to solve frequently recurring problems are captured into
patterns. Besides the conceptual solution knowledge captured
into patterns also concrete realizations can ease and guide the
elaboration of overall solutions. In this work we build upon our
concept of Solution Languages [1] to show its general feasibility
by application scenarios in different domains. Thereby, we
provide evidence for the generality of Solution Languages by
means of applications in IT domains and, exemplarily, in the
non-IT domain of the digital humanities.

Originated by Christopher Alexander et al. [2] in the domain
of building architecture, the pattern concept was also heavily
applied in many disciplines in computer science. Patterns
were authored, e.g., to support object-oriented design [3],
for designing software architectures [4], for human-computer
interaction [5], to integrate enterprise applications [6], for
documenting collaborative projects [7], to support application
provisioning [8] or to foster the understanding of new emerging
fields like the Internet of Things [9] [10]. Triggered by the
successful application of the pattern concept in computer
science, it also gains momentum in non-IT disciplines such
as creative learning [11] as well as disaster prevention and
surviving [12]. Recently, collaborative research led to the
application of patterns to the domain of digital humanities [13].

In general, patterns capture domain knowledge as nuggets

of advice, which can be easily read and understood. They are
interrelated with each other to form pattern languages, which
ease and guide the navigation through the domain knowledge.
This is often supported by links between patterns that carry
specific semantics that help to find relevant other patterns
based on a currently selected one [14]. In previous work, we
showed that this principle can be leveraged to organize patterns
on different levels of abstraction into pattern languages [15].
Refinement links can be used to establish navigation paths
through a set of patterns, which lead a user from abstract
and generic patterns to more specific ones that, e.g., provide
technology-specific implementation details about the problem
– often presented as implementation examples. We further
showed that also concrete solutions, i.e., concrete artifacts
that implement a solution described by a pattern, can be stored
in a solution repository and linked to patterns [16] [17]. Thus,
we were able to show that pattern-based problem solving is not
only limited to the conceptual level, but rather can be guided
via pattern refinement towards technology-specific designs and,
finally, the selection and reuse of concrete solutions.

However, this approach still lacks guidance for navigation
through the set of concrete solutions. Currently, navigation
is only enabled on the level of pattern languages, while it is
not possible to navigate from one concrete solution to others,
due to missing navigation structures. This hinders the reuse of
available concrete solutions especially in situations when many
different and technology-specific concrete implementations of
patterns have to be combined. As a result, it is neither easily
understandable which concrete solutions can be combined to
realize an aggregated solution, nor which working steps actually
have to be done to conduct an aggregation. Thus, an approach is
missing that allows to systematically document such knowledge
in an easily accessible, structured, and human-readable way.

Therefore, we present the concept of Solution Languages,
which introduces navigable semantic links between concrete
solutions. A Solution Language organizes concrete solution
artifacts analogously to pattern languages organize patterns.
Their purpose is to ease and guide the navigation through
the set of concrete solutions linked to patterns of a pattern
language and, thus, ease the actual implementation of patterns
via the reuse of already present concrete solutions. Thereby,
knowledge about how to aggregate two concrete solutions
is documented on the semantic link connecting them. This
concept results in navigable networks of concrete solution

artifacts, which can be aggregated to ease the implementation
of overall solutions. It connects the perspective design with
concrete implementations resulting in a novel approach for
pattern-based software engineering.

The remainder of this paper is structured as following: as
in our previous work [1], we provide background information
and give a more detailed motivation in Section II. Then, we
introduce the concept of Solution Languages and a means
to add knowledge about solution aggregation in Section III.
Besides the application in the domain of cloud application
architecture, we extend the validation of our approach by
an application scenarios in the domain of cloud application
management. Further, we discuss how the presented concept
of Solution Languages can be applied in domains apart from
information technology (IT) in the domain of costumes in films
in Section IV. We show the technical feasibility of Solution
Languages by a prototype based on wiki-technology and by
implementing the presented use cases of cloud application
architecture and cloud application management in Section V.
We discuss related work in Section VI and, finally, conclude
this work in Section VII by an outlook to future work.

II. BACKGROUND AND MOTIVATION

Patterns document proven solutions for recurring problems.
They are human-readable documentations of domain expertise.
Thereby, their main purpose is to make knowledge about
how to effectively solve problems easily accessible to readers.
According to Meszaros and Doble [18], they are typically
written and structured using a common format that predefines
sections such as the Problem, which is solved by a pattern,
the Context in which a pattern can be applied, the Forces that
affect the elaboration of concrete solutions, the Solution, which
is a description of how to solve the exposed problem, and a
Name indicating the essence of a pattern’s solution.

Patterns are typically not isolated from each other but are
linked with each other to enable the navigation from one pattern
to other ones, which are getting relevant once it is applied. In
this manner, a navigable network of patterns is established — a
pattern language [19]. Often, a pattern language is established
by referring other patterns in the running text of a pattern by
mentioning them. This applies, especially, to pattern languages
that are published as a monograph. Using wikis as platforms for
authoring and laying out a library of patterns has further enabled
to establish semantic links between patterns [7] [20]. This
allows to enrich a pattern language to clearly indicate different
navigation possibilities by different link types. Such link types
can state, e.g., AND, OR, and XOR semantics, describing that
after the application of a pattern other patterns are typically
also applied, that there are additional patterns, which can be
alternatively applied, or that there is an exclusive choice of
further patterns that can be applied afterwards, respectively [7].
Further, they can tell a reader, for example, that a pattern
is dealing with the equivalent problem of another pattern,
but gives solution advice on a more fine-grained level in
terms of additional implementation- and technology-specific
knowledge [15]. Thus, the navigation through and even between
pattern languages can be eased significantly.

Pattern Language

P3

S3

S5

S6

S9

P5

S8

S7S4

S2
S1

P1

P4
P2

Figure 1. Missing Navigation Support through the Space of Concrete
Solutions connected to a Pattern Language

Since patterns and pattern languages capture the essence
and expertise from many concrete solutions of recurring
problems, implementation details, such as technology-specific
or environmental constraints, which affect the actual application
of a pattern for specific problems at hand, are abstracted away
during the pattern authoring process [21] [22]. As a result, this
abstraction ensures that only the conceptual core ideas of how
to solve a problem in a context are captured into a pattern, which
makes the pattern applicable to many similar concrete use cases
that may occur. In the course of this, the application of patterns
for specific use cases gets unnecessarily hard because concrete
solutions, i.e., implementations of a pattern, are lost during this
authoring process. Thus, we showed that connecting concrete
solutions to patterns in order to make them reusable when a
pattern has to be applied is a valuable concept to save time
consuming efforts [16] [17]. This concept is depicted in Fig. 1,
where a pattern language is illustrated as a graph of connected
patterns at the top. Based on the conceptual solution knowledge,
the pattern language opens a solution space, illustrated as an
ellipse below the pattern language, which is the space of all
possible implementations of the pattern language. Concrete
solutions that implement individual patterns of the pattern
language are, consequently, located in the solution space and
are illustrated as circles. They are linked with the pattern they
implement, which enables to directly reuse them once a pattern
is selected from the pattern language in order to be applied.

However, while navigation through conceptual solutions
is provided by pattern languages in terms of links between
patterns, such navigation capabilities are currently not present
on the level of concrete solutions due to the absence of links
between the concrete solutions. Thus, if a concrete solution
is selected, there is no guidance to navigate through the
set of all available and further relevant concrete solutions.

Navigation is only possible on the conceptual level of patterns
by navigation structures of the pattern language. This is time
consuming if experts have their conceptual solution already in
mind and want to quickly traverse through available concrete
solutions in order to examine if they can reuse some of
them for implementing their use case at hand. Further, if
a set of concrete solutions is already present that provides
implementation building blocks for, e.g., a specific technology,
it is often necessary to quickly navigate between them in
order to understand their dependencies for reusing them. This
is specifically the case if concrete solutions cannot be reused
directly but need to be adapted to a specific use case, especially
if they have to be used in combination. Then, they still
can provide a valuable basis for starting adaptions instead
of recreating a concrete solution from scratch. Finally, if
some concrete solutions have proven to be typically used in
combination it is valuable to document this information to
ease their reuse. While this could be done on the level of a
pattern language, we argue that this is bad practice because
implementation details would mix up with the conceptual
character of the pattern language. This would require to update
a pattern language whenever implementation insights have to be
documented. It can get cumbersome, if concrete solutions are
collected over a long period of time and technology shifts lead
to new implementations and approaches on how to aggregate
them, while the more general pattern language stays the same.

Therefore, to summarize the above discussed deficits, there
is (i) a lack of organization and structuring at the level of
concrete solutions, which (ii) leads to time consuming efforts
for traversing concrete solutions, and that (iii) prevents the
documentation of proven combinations of concrete solutions.

III. SOLUTION LANGUAGES: A MEANS TO STRUCTURE,
ORGANIZE, AND COMPOSE CONCRETE SOLUTIONS

To overcome the discussed deficits, we introduce the concept
of Solution Languages. The core idea of Solution Languages
is to transfer the capabilities of a pattern language to the level
of concrete solutions having the goal of easing and guiding
the application of patterns via reusing concrete solutions in
mind. Specifically, the following capabilities have to be enabled
on the level of concrete solutions: (R1) navigation between
concrete solutions, (R2) navigation guidance to find relevant
further concrete solutions, and (R3) documentation capabilities
for managing knowledge about dependencies between concrete
solutions, e.g., how to aggregate different concrete solutions to
elaborate comprehensive solutions based on multiple patterns.

A. Ease and Guide Traversing of Concrete Solutions

In our previous work we have shown how concrete solu-
tions can be linked with patterns in order to ease pattern
application [16] [17]. While this is indicated in Fig. 1 by
the links between the patterns and the concrete solutions in the
solution space, the systematic structuring and organization of
the concrete solutions is still an open issue (cf. Section II).

Thus, to realize the requirements (R1) and (R2), a Solution
Language establishes links between concrete solutions, which

are annotated by specific semantics that support a user to
decide if a further concrete solution is relevant to solve his or
her problem at hand. This is especially important, if multiple
patterns have to be applied and, thus, also multiple linked
concrete solutions have to be combined. Thereby, the semantics
of a link can indicate that concrete solutions connected to
different patterns can be aggregated with each other, that
individual concrete solutions are variants that implement the
same pattern, or if exactly one of more alternative concrete
solutions can be used in combination with another one.

Depending on the needs of users also additional link
semantics can be added to a Solution Language. To give one
example, semantic links can be introduced that specifically
indicate that selected concrete solutions must not be aggregated.
This is useful in cases when concrete solutions can be
technically aggregated on the one hand, but on the other hand
implement non-functional attributes that prevent to create a
proper aggregated solution. Such situations might occur, e.g.,
in the field of cloud computing, where applications can be
distributed across different cloud providers around the world.
Then, this is also implemented by the concrete solutions that
are building blocks of such applications. Different concrete
solutions can force that individual parts of an application are
deployed in different regions of the world. In some cases, law,
local regulations, or compliance policies of a company can
restrict the distribution of components of an application to
specific countries [23]. In such situations, it is very valuable to
document these restrictions on the level of concrete solutions
via the latter mentioned link type. This can prevent users from
unnecessarily navigating to concrete solutions that are irrelevant
in such use cases. Nevertheless, the concrete solutions that are
not allowed to be used in a specific scenario can be kept in a
Solution Language, e.g., for later reuse if preventing factors
change or as a basis for adaptions that make them compliant.

While (R1) and (R2) can be realized by means of seman-
tically typed links between concrete solutions as introduced
above, (R3) requires to introduce the concept of a Concrete

Solution Aggregation Descriptor (CSAD). A CSAD allows
to annotate a link between concrete solutions by additional
documentation that describes how concrete solutions can be
aggregated in a human-readable way. This can be, e.g., a specific
description of the working steps required to aggregate the
concrete solutions connected by the annotated link. Beyond
that, a CSAD can also contain any additionally feasible
documentation, such as a sketch of the artifact resulting from
the aggregation, which supports the user. The actual content of a
CSAD is highly specific for the domain of the concrete solutions.
The aggregation of concrete solutions that are programming
code can, for example, often be described by adjustments of
configurations, by manual steps to be performed in a specific
integrated development environment (IDE), or by means of
additional code snippets required for the aggregation. In other
domains, such as the non-technical domain of costumes in films,
the required documentation to aggregate concrete solutions
looks quite different and can be, for example, a manual about
how to combine different pieces of clothing, which in this case
are concrete solutions, in order to achieve a desired impression

Pattern Language

P3

S3

S5

S6

S9

P5

S8

S7S4

S2
S1

P1

P4
P2

Figure 2. A Solution Language structures the Solution Space of a Pattern
Language and enables navigation through relevant Concrete Solutions

of a character in a movie. Thus, a CSAD can be leveraged to
systematically document concrete implementation knowledge
about how to create aggregated overall solutions.

As a result, CSADs are the means to add arbitrary documen-
tation to a Solution Language about how to aggregate concrete
solutions. Hence, a Solution Language can be iteratively
extended over time to preserve the expert knowledge of a
domain on the implementation level the same way as pattern
languages do on the conceptual level. Especially in situations
when technologies are getting outdated and experts, which are
required to maintain systems implemented in such technologies
are getting only scarcely available, Solution Languages can
be valuable instruments that preserve technology-specific
implementation expertise and documentation. Since concrete
solutions are also connected to the patterns they implement,
conceptual as well as implementation knowledge can be kept
easily accessible and inherently connected.

The overall concept of a Solution Language is illustrated in
Fig. 2. There, concrete solutions are linked to the patterns they
implement. This enables a user to navigate from patterns to
concrete implementations that can be reused, as described in
our earlier work [16] [17]. Additionally, the concrete solutions
are also linked with each other in order to allow navigation
on the level of concrete solutions. For the sake of simplicity
and clarity, Fig. 2 focusses on links that represent can be

aggregated with semantics, thus, we omitted other link types.
Nevertheless, the relations between the concrete solutions can
capture arbitrary semantics, such as those discussed above. The
semantic links between concrete solutions and the fact that
they are also linked to the patterns, which they implement,
enables to enter the Solution Language at a certain concrete
solution and allows to navigate among only the relevant concrete

solutions that are of interest for a concrete use case at hand.
For example, if concrete solutions are available that implement
patterns in different technologies, then they typically cannot
be aggregated. Thus, entering the Solution language at a
certain concrete solution and then navigating among only
those concrete solutions that are implemented using the same
technology, using semantic links indicating this coherence (e.g.,
can be aggregated with), can reduce the effort to elaborate
an overall composite solution significantly. Finally, Fig. 2
depicts CSADs attached to links between concrete solutions
in the form of documents. These enrich the semantic links
and provide additional arbitrary documentation on how to
aggregate the linked concrete solutions. This way, a Solution
Language delegates the principles of pattern languages to
the level of concrete solutions, which helps to structure and
organize the set of available concrete solutions. While a pattern
language guides a user through a set of abstract and conceptual
solutions in the form of patterns, a Solution Language provides
similar guidance for combining concrete solutions to overall
artifacts, all provided by semantic links between concrete
solutions and additional documentation about how to aggregate
them. Navigation support between concrete implementations of
patterns cannot be given by a pattern language itself, because
one pattern can be implemented in many different ways, even
in ones that did not exist at the time of authoring the pattern
language. Thus, the elucidated guidance is required on the
solution level due to the fact that a multitude of different
and technology-specific concrete solutions can implement the
concepts provided by a pattern language.

B. Mapping Solution Paths from Pattern Languages to Solution

Languages

Since pattern languages organize and structure patterns to a
navigable network, they can be used to select several patterns
to solve a concrete problem at hand by providing conceptual
solutions. A user typically tries to find a proper entry point to
the pattern language by selecting a pattern that solves his or her
problem at least partially. Starting from this pattern, he or she
navigates to further patterns in order to select a complete set of
patterns that solve the entire problem at hand in combination.
This way, several patterns are selected along paths through the
pattern language. Thus, the selected patterns are also called a
solution path through the pattern language [15] [24]. Figure 3
shows such a solution path by the selected patterns P2, P4, and
P5. If several solution paths proof to be successful for recurring
use cases, this can be documented into the pattern language to
present stories that provide use case-specific entry points to the
pattern language [25]. Further, if several concrete solutions are
often aggregated by means of the same CSAD, then this can
reveal that there might be a candidate of a composite pattern
that can be added to the pattern language by abstracting the
underlying solution principles. This might be supported and
automated by data mining techniques in specific domains [26].

Due to the fact that concrete solutions are linked with the
patterns they implement, solution paths through a pattern
language can support to find suitable entry points to the

Pattern	Language

P3

S3

S5

S6
S8

S2
S1

P1

S9
S7S4

P5P4
P2

Figure 3. Solution Path from a Pattern Language
projected to a Solution Language

corresponding Solution Language. Accordingly, a user can
navigate from P2 to the concrete solution S4. From there, the
Solution Language provides navigation support to find further
concrete solutions that can be aggregated with S4. If concrete
solutions are available for all patterns contained in the solution
path, and if these can be aggregated with each other, then
the solution path can be mapped to a concrete solution path

in the Solution Language. This is illustrated in Fig. 3 by the
highlighted path from S4 via S7 to S9 through the Solution
Language. Concrete solution paths allow to translate design
decisions that are taken on the conceptual level of the pattern
language to reusable concrete solutions that are organized
into the Solution Language. The mapping of the solution path
to a corresponding set of concrete solutions of the Solution
Language can, consequently, provide knowledge about how to
elaborate an aggregated solution of the selected patterns by
CSADs of the Solution Language, which can significantly speed
up the elaboration of an overall composite concrete solution.

IV. APPLICATION OF SOLUTION LANGUAGES

In the following, we show the feasibility of the Solution
Languages concept on the basis of application scenarios in
domains in which we have already investigated and researched
pattern languages. These are the IT domains Cloud Application

Architecture and Cloud Application Management as well as
the non-IT domain of Costumes in Films. The latter scenario
demonstrates that the concept of Solution Languages is not
tied to IT but can be rather applied to other domains, too.

A. Application in the Domain of Cloud Architecture

The first application scenario deals with designing appli-
cation architectures that natively support cloud computing

characteristics and technologies. In this context, the pattern
language of Fehling et al. [27] provides knowledge about
tailoring applications to leverage the capabilities of cloud
environments such as Amazon Web Services (AWS) [28].
One important capability in terms of cloud computing is the
automatic and elastic scaling of compute resources. To enable
this, the pattern language provides the patterns Elastic Load

Balancer and Stateless Component. Elastic Load Balancer

describes how the workload of an application can be distributed
among multiple instances of the application. If the workload
increases, additional instances are added to keep the application
responsive. Once the workload decreases unnecessary instances
are decommissioned to save processing power and expenses.
Thereby, the actual workload, i.e., requests from clients, is
spread among the different application instances by means
of a so-called load balancer component, which maintains and
manages the available endpoints of the instances. The Elastic

Load Balancer pattern links to the Stateless Component pattern,
which describes how components that contain the business
logic of an application can manage their state externally,
e.g., in an additional database. This behavior enables to scale
them elastically because recently created instances can fetch
state from the external datastore and write changes back to
it. As a result, state synchronization among the different
application instances is handled via the database and no further
synchronization and state replication mechanisms are required.
Both patterns are depicted at the top of Fig. 4, whereby a
directed edge connects them indicating the pattern language
structure expressing that once Elastic Load Balancer is used
then also Stateless Component is ordinarily used.

Realizations of these patterns can be connected to them, as
depicted in the figure by S1 and S2. These concrete solutions
implement the patterns by means of AWS CloudFormation [29]
snippets, which allows to describe collections of AWS-resources
by means of a java script object notation (JSON)-based
configuration language. Such configurations can be uploaded
to AWS CloudFormation, which then automatically provisions
new instances of the described resources. An excerpt of the
CloudFormation snippet that describes a load balancer is shown
on the left of Fig. 4. The MyLoadBalancer configuration
defines properties of the load balancer, concretely the port and
protocol, which are required to receive and forward workload.
The corresponding CloudFormation snippet, which implements
the concrete solution S2 is shown on the right. So-called
Amazon Machine Images (AMI) allow to package all information
required to create and start virtual servers in the AWS cloud.
Therefore, the MyLaunchCfg snippet of S2 contains a reference
to the AMI ami-statelessComponent, which is able to create and
start a new virtual server that hosts an instance of a stateless
component. The link between S1 and S2 illustrates that they
can be aggregated in order to obtain an overall composite
solution, which results in a complete configuration that allows
the load balancer instance to distribute workload over instances
of virtual servers hosting the stateless component.

If a user wants to aggregate both snippets, he or she
can study the CSAD attached to the link between both
concrete solutions, which is outlined in the middle of the

Elastic	Load	Balancer Stateless	Component

S1 S2

"MyLoadBalancer" : {
"Type" : "AWS::ElasticLoad

Balancing::LoadBalancer",

"Properties" :

{ "Listeners" :

[

{

"LoadBalancerPort" : "80",

"InstancePort" : "80",

"Protocol" : "HTTP"

}

]

}

}

"MyLaunchCfg" : {

"Type" : "AWS::AutoScaling::Launch

Configuration",

"Properties" : {

"ImageId" :

"ami-statelessComponent",

"InstanceType" :

"m1.large"

}

}

• Create an AWS::AutoScaling::Auto
ScalingGroup snippet

• Set the property LaunchConfigura-
tionName to the name of the

AWS::AutoScaling::LaunchConfigu-
ration snippet that launches S2

• Add the name of the AWS::Elastic
LoadBalancing::LoadBalancer
snippet that launches S1 to the

property LoadBalancerNames
• Copy all three snippets into the

Resources property of a plain

CloudFormation template

Selected	Patterns
Associated	Concrete	Solutions

Figure 4. Concrete Solution Aggregation Descriptor documenting how to aggregate concrete solutions in the form of two CloudFormation snippets

figure. The CSAD provides detailed information about the
actual working steps that have to be performed in order to
combine both CloudFormation snippets. Therefore, the CSAD
describes that both snippets have to be aggregated via a so-
called AutoScalingGroup, which is itself also a CloudFormation
snippet. The AutoScalingGroup references both, the MyLoad-

Balancer and the MyLaunchCfg snippets via the properties
LaunchConfigurationName and LoadBalancerNames. Finally,
all three snippets have to be integrated into the property
Resources of a plain CloudFormation template. By documenting
all this information into the Solution Language, (i) the link
from concrete solutions in form of CloudFormation snippets
to the patterns they implement, (ii) the semantic link between
these concrete solutions indicating that they can be aggregated,
and (iii) the detailed documentation about how to perform the
aggregation can significantly ease the application of the two
patterns to elaborate an overall combined solution.

B. Application in the Domain of Cloud Management

In this section, we apply the concept of Solution Languages
to the domain of cloud application management. Considering
that we build upon the application scenario described in the
previous section. Thereby, we show how patterns from the
pattern language by Fehling et al. [27] can also be used to
deal with the question about how to systematically describe
and model the interplay of the components of an application
to enable the automated provisioning of new application
instances via standard-compliant provisioning engines. Hence,
in combination with the previous one, this use case shows that
Solution Languages can be created and maintained addressing
completely different aspects of a domain captured into overall
and comprehensive pattern languages. Such a pattern language
is the above introduced one by Fehling et al. [27], which

covers different viewpoints of the field of cloud computing and,
thus, acts as an entry point to Solution Languages providing
and organizing completely different solution artifacts. Thereby,
we specifically focus on the provisioning of cloud applications
based on the OASIS cloud standard Topology and Orchestration

Specification for Cloud Applications (TOSCA) [30].

Thus, in the following, we firstly explain the patterns of
this application scenario to understand the cloud management
specific issues to be tackled. Secondly, we give a brief
description of the main concepts provided by TOSCA, which
are required to understand the concrete solutions we use in
this scenario. Finally, we show how CSADs can be used
either to provide descriptions for manually aggregating concrete
solutions or, respectively, also to automate the aggregation to
overall composite solutions.

The application scenario is depicted in Fig. 5. There, the
three patterns Stateless Component, Elastic Infrastructure, and
Key Value Store are illustrated. While the pattern Stateless

Component describes that the state of an application should
be kept externally from its processing components, the pattern
Key Value Store provides the conceptual solution of a datastore,
which is specifically designed to store and retrieve data via
identifying keys. For instance, if an application has to handle
workload, which requires user sessions such as shopping
carts of a web store, the user sessions constitute the state
of the interaction with the user. Although components of the
application have to process this state it should not be kept in the
actual processing components as discussed above but moved
to an external store, which can be a Key Value Store while the
unique session ids of the user sessions can be used to select
and manipulate the data. Thus, both Stateless Component and
Key Value Store provide conceptual solutions, which have to be
combined to an overall solution in order to create an application,

Key	Value	StoreStateless	Component

S1

Elastic	Infrastructure

S2 S3Express	App

Node.js

dependsOn

hostedOn

hostedOn

Ubuntu

vSphere
Redis

Ubuntu

hostedOn

Selected	Patterns
Associated	Concrete	Solutions

Figure 5. Solution Language comprising of Service Templates

which on the one hand can handle state and, on the other hand,
can assure that processing components are stateless. However, to
run such an application also a hosting environment is required.
In the domain of cloud computing, where automation is
important, hosting environments commonly follow the concept
of an Elastic Infrastructure, which enables the automated
provisioning and decommissioning of compute resources in the
form of virtual machines. So, besides public cloud offerings,
such as Amazon Elastic Compute Cloud [31] or Microsoft
Azure Virtual Machines [32], also private cloud technologies,
such as VMWare vSphere [33] or OpenStack [34], provide an
application programming interface (API) allowing to access
these offerings programmatically. Thus, from the perspective of
cloud management Elastic Infrastructure provides a conceptual
solution for elastically hosting cloud applications.

The conceptual knowledge provided by these three patterns
can be complemented by an implementation-specific Solution
Language capturing concrete solutions, which can be aggregated
for the complete provisioning of applications. In this scenario,
we leverage the expressiveness of TOSCA to populate the
Solution Language as indicated in Fig. 5 by means of TOSCA
service templates. A service template is the core entity of
TOSCA to describe the topology of an application, i.e., its
structure in terms of its components and the relations between
them. Components are called node templates and relations
relationship templates, which both can be abstracted into node

types and relationship types, respectively, to enable their reuse
in different service templates [35]. Besides these structural
description also all required software executables (deployment

artifacts) and management logic (implementation artifacts) to
install, configure, start, stop, and terminate the application
are contained. Thus, a service template can be grasped as
a blue print of the application, which can be automatically

instantiated to create new running instances of an application.
Such service templates can be processed by TOSCA-compliant
provisioning engines, such as OpenTOSCA [8] [36]. Thereby,
the provisioning engine parses the modeled application topology
and triggers all actions in terms of API-calls and executions
of management logic to create a new application instance in
the specified hosting environment.

A Solution Language comprising of service templates as
concrete solutions is depicted in Fig. 4 by the concrete solutions
S1, S2, and S3. S1 provides a realization of the Stateless

Component pattern by means of a service template that describes
the topology of an Express [37] application, which is a web
framework based on Node.js [38].

Node.js

dependsOn

hostedOn

hostedOn

Ubuntu

Redis

Ubuntu

hostedOn

vSpherevSphere

hostedOn

connectsTo

hostedOn

Express	App

Figure 6. Aggregated Service Template

This reflects in the dependsOn relation between the Express
App and the Node.js component in the depicted topology.
Accordingly, both components are hostedOn an Ubuntu [39]
operating system. A concrete solution of the Key Value Store

pattern is provided by the concrete solution S3 via a service
template containing a node template that is capable of installing
Redis [40], which is an open source key value store, onto
an Ubuntu operating system. Finally, to bring up an entire
application, S2 provides an implementation of the Elastic

Infrastructure pattern by means of a service template wrapping
the API of a vSphere infrastructure.

The CSADs attached to the links between these concrete
solutions can either be descriptions about how to manually
combine these service templates in order to get an overall
solution that can be provisioned, or they can also comprise of
programs, which allow to automatically aggregate the different
service templates. In the first case, the CSAD between S1

and S2 explains that the Ubuntu node template of S1 has
to be linked via a hostedOn relation with the vSphere node
template of S2 in order to be provisioned in a proper cloud
environment based on the vSphere technology. Likewise, the
Ubuntu node template of S2 has to be wired with a vSphere
node template. Further, the CSAD between S1 and S3 explains
that the Express App node template of S1 has to be linked
via a connectsTo relation with the Redis node template of S3.
This can be done, for example, through a TOSCA-compliant
modeling tool such as Eclipse Winery [41] but also directly
in the respective TOSCA-files. Thus, the CSADs can provide
different descriptions respective to available tooling.

However, in the second case, the CSADs can also link to
programmatic solutions that allow the aggregation of different
service templates. The TOSCA concepts of requirements and
capabilities can be used to specify constrained requirements
that have to be resolved and fulfilled by a TOSCA provisioning
engine to generate provisionable service templates [42]. Using
these concepts, on the one hand, the node templates Ubuntu
of S1 and S3 can be associated with requirements stating that
a hosting environment is required, which can provision and
run Ubuntu. On the other hand, the vSphere node template
of S2 can expose the very same as a capability. Then, a
TOSCA-compliant provisioning engine can aggregate S1 and
S2 as well as S3 and S2 to resolve the defined requirements
providing complete application stacks for provisioning and
hosting. However, the resulting stacks, finally, have to be wired.
Thus, to connect them the node template Express App, which
implements the Stateless Component pattern, can be associated
with a requirement stating that a Key Value Store is required
to manage its state. Further, the Redis node template can,
respectively, expose a capability fulfilling this requirement
in order to enable the automatic aggregation of both service
templates into an overall one [43] [42]. This results in a service
template in which the aggregated topologies of S1 and S3 are
connected via a connectsTo relationship between the node
templates Express App and Redis. In this case, the aggregation
is done automatically via the TOSCA completion mechanisms
based on requirements and capabilities [43] [42]. Note that
also the deployment and implementation artifacts of all node

templates are packed into the overall service template to keep
the newly created service template provisionable. The resulting
aggregated application topology is depicted in Section IV-B and
represents the service template based on the different concrete
solutions linked to the patterns Stateless Component, Key Value

Store, and Elastic Infrastructure. This service template can then
be used as a starting point to add arbitrary business logic in
the Express App to be processed as a stateless component. The
application scenario has shown that CSADs can either be used
to provide human-readable manuals about how to aggregate
concrete solutions but also that CSADs can be provided as
corresponding automation logic that enables the automation of
aggregating concrete solutions to comprehensive ones.

C. Application in the Domain of Costumes in Films

In addition to the domain of IT, Solution Languages are also
promising for rather different domains of pattern languages, as
we want to prove by applying these concepts to the domain of
costume languages in films [21]. Costume languages capture
the knowledge of proven solutions about how to communicate
a certain stereotype, its character traits or transformations,
as well as geographical and historical setting of a film by
the costumes worn by roles [21]. As depicted in Fig. 7, an
example of a costume pattern is the Sheriff : a pattern describing
all significant elements — like the shirt, the trousers, the
ammunition belt and the wild west vest, the neckerchief, the
boots and spurs, the cowboy hat and the sheriffs star — to
communicate the stereotype of a sheriff in a western genre
movie to the audience [44].

However, not only entire outfits are captured as costume
patterns. Also proven principles describing, e.g., how to
specifically wear or modify certain costumes or parts of them to
indicate different character traits or how conditions of a costume
can transport specific moods of a character are also captured
into costume patterns. Therefore, as illustrated on the right of
the pattern language in Fig. 7, another possible pattern is the
pattern Active Character capturing actions and modifications
to make a character look more active in the sense of being
more energetic. Each of the depicted costume patterns has
multiple concrete solutions connected to it representing concrete
costumes in films. The Sheriff costume pattern, e.g., is linked
to the concrete costumes worn by sheriffs in different western
films, such as John T. Chance (John Wayne) in Rio Bravo

(1959) or Burnett (Frank Wolf) in Il grande silenzio (1968), as
indicated by S1 and S3 in Fig. 7. Moreover, concrete solutions
of the Active Character pattern are, e.g., Jake Lonergan (Daniel
Craig) in Cowboys and Aliens (2011) or John T. Chance (John
Wayne) in Rio Bravo (1959). To create different arrangements
of these patterns for specific scenes in films a costume designer
can hark back to these captured concrete solutions to get an
idea about the required costume and its style.

Other than the IT domain, which deals with concrete
solutions that are intangible in the sense that they are often
programming code or other forms of digital artifacts, in
the domain of costumes in films, the concrete solutions are
tangible artifacts. Thus, they could be kept in a wardrobe

S2

S5

S4

P2

Costume	Pattern	Language

P1

S1

S3

S6

S7

Active	Character
Sheriff

S:	John	T.	Chance
in	Rio	Bravo

S:	Burnett	
in	Il	grande silenzio

S:	Jake	Lonergan
in	Cowboys	&	Aliens

S:	John	T.	Chance
in	Rio	Bravo

Figure 7. Example of a Costume Pattern Language linked to its Solution Language

of the costume designer at a specific film set or could also
be provided by a costume rental. While the aggregation of
intangible solutions can often be automated [16] [17] as
described above, e.g., by merging code snippets to an aggregated
solution, the aggregation of tangible solutions, such as concrete
costumes, often has to be done manually. However, also
in the case of tangible solutions, the concept of Solution
Languages can be used for documenting knowledge about how
to combine concrete solutions. Such knowledge is typically not
systematically captured yet because of a missing methodical
approach. Therefore, CSADs can be used to overcome this
problem by documenting procedures and manuals describing
the working steps to combine solutions.

In case of costumes in films [21], a Solution Language
linking together all concrete costumes as concrete solutions of
a costume pattern can be authored that allows to reuse already
existing costumes for dressing actors. Thereby, a CSAD can
describe, for example, how characters have to be dressed in
order to create an intended effect. This information can be used
by costume designers to create suitable costumes as required
for particular scenes in a film. While Fig. 7 illustrates the
general coherence between costumes as concrete solutions and
costume patterns, in the following we describe a CSAD in the
domain of costumes in films exemplarily.

When aiming to give the impression to the audience via
the costume that a sheriff is particularly active in a specific
scene, the Sheriff pattern has to be combined with the Active

Character pattern. Further, concrete solutions are selected,
which are linked with each other indicating that they can be
combined as depicted in Fig. 8. Also a CSAD is attached
to the relation between both concrete solutions containing all
relevant information for combining them to achieve the desired

impression by rolling up the sleeves of the sheriff’s shirt. The
CSAD specifically describes the actions to be performed by a
costume designer in order to combine the concrete solutions
under consideration. The CSAD depicted in Fig. 8 briefly
illustrates this and shows how the concrete solution S1 of
the Sheriff pattern and the concrete solution S2 of the Active

Character pattern can be combined. The resulting modified
costume, i.e., the combination of S1 and S2 is depicted on the
right as a new combined concrete solution Snew. Note that
this combined concrete solution can indicate further solution
principles, which might worth to be captured into an additional
pattern if created many times for different scenes and films.

V. PROTOTYPE

To proof the technical feasibility of the presented approach of
Solution Languages, we implemented a prototype on the basis
of PatternPedia [20]. PatternPedia is a wiki that is built upon
the MediaWiki [45] technology and the Semantic MediaWiki
extensions [46]. We implemented the application scenario about
cloud architectures presented in the previous section. Therefore,
we captured the cloud computing patterns in form of wiki pages
into PatternPedia and added links between them accordingly
to the pattern language of Fehling et al. [27]. We also added
the concrete solutions in the form of AWS CloudFormation
snippets to PatternPedia so that each AWS CloudFormation
snippet is represented by a separate wiki page that references
a file containing the corresponding JSON-code. Then, we
linked the wiki pages of the concrete solutions with wiki
pages representing the patterns they implement to enable the
navigation from abstract solution principles captured in patterns
to technology-specific implementations in the form of concrete

• Check if the character wears long sleeves

• Check if the material is foldable (no jacket)

• Roll up the sleeves
• open the buttons of the cuffs
• fold the cuffs upwards up to three times

Sheriff	
Costume	Pattern

Active	Character	
Costume	Pattern

S1 S2

Selected	Patterns
Associated	Concrete	Solutions

Resulting	Solution

Snew

Figure 8. Concrete Solution Aggregation Descriptor documenting how to aggregate concrete solutions in the domain of costumes in films

solutions. So, we were able to navigate from patterns to concrete
solutions and select them for reuse once a pattern has to be
applied. To establish a Solution Language we declared a new
property can be aggregated with using the Semantic MediaWiki
extensions. Properties can be used to define arbitrary semantics,
which can be added to wiki pages. The defined property accepts
one parameter as a value, which we used to reference wiki pages
that represent concrete solutions. This way, concrete solutions
can be semantically linked with each other by adding the
property into the markdown of their wiki pages and providing
the link to the wiki page of the concrete solution, which the
can be aggregated with semantics holds.

To annotate the link between two specific concrete solutions
with information required for their aggregation, we added a
CSAD as a separate wiki page containing a detailed description
of the working steps required for aggregating them. Finally,
we used the query functionality of the Semantic MediaWiki
extensions to attach the CSAD to the semantic link between
two concrete solutions. We utilized the parser function #ask of
the Semantic MediaWiki extensions to query the two concrete
solutions that are semantically linked with each other via the
can be aggregated with property. This allowed us to also
navigate from one concrete solution to other relevant concrete
solutions based on the information of the semantic links, by also
providing information about how to aggregate both concrete
solutions to an overall one in a human-readable way.

Similarly, we also realized the second application scenario
about cloud management via PatternPedia. The concrete solu-
tions in this scenario, however, are represented by so-called
TOSCA cloud service archives (CSAR). These archives are used
to bundle service templates as well as all related deployment and
implementation artifacts in a self-contained way and were linked

with the wiki-pages representing them as concrete solutions.
We further linked them with each other and added CSADs to
describe how the several service templates can be combined
as described in Section IV. Finally, we also added links to an
instance of Eclipse Winery [41], which is a TOSCA-compliant
modeling tool capable of merging different service templates
automatically. Thus, Winery provides the automation of CSADs
as conceptually described in the application scenario.

VI. RELATED WORK

The term pattern language was introduced by Alexander et
al. [2]. They use this term metaphorically to express that design
patterns are typically not just isolated junks of knowledge,
but are rather used and valuable in combination. At this, the
metaphor implies that patterns are related to each other like
words in sentences. While each word does only sparsely provide
any information only the combination to whole sentences
creates an overall statement. So, also patterns only unfold
their generative power once they are applied in combination,
while they are structured and organized into pattern languages
in order to reveal their combinability to human readers.

Mullet [14] discusses how pattern catalogues in the field of
human-computer interaction design can be enhanced to pattern
languages to ease the application of patterns in combination.
He reveals the qualities of pattern languages by discussing
structuring elements in the form of different semantics of pattern
relations. Further, the possibility to connect artifacts to patterns,
such as detailed implementation documentation or also concrete
implementations is identified as future research.

Zdun [24] formalizes pattern language in the form of pattern
language grammars. Using this approach, he tackles the problem

of selecting patterns from a pattern language. He reflects
design decisions by annotating effects on quality attributes
to a pattern language grammar. Relationships between patterns
express semantics, e.g., that a pattern requires another pattern,
a pattern is an alternative to another one, or that a pattern is
a variant of another pattern. Thus, he describes concepts of
pattern languages, which are transferred in this work to the
level of concrete solutions and Solution Languages.

Reiners et al. [47] present a requirements catalogue to support
the collaborative formulation of patterns. These requirements
can be used as a basis to implement pattern repositories. While
the requirements mainly address the authoring and structuring
of pattern languages, they can also be used as a basis to detail
the discussion about how to design and implement repositories
to author Solution Languages. Pattern Repositories [7] [20] [48]
have proven to support the authoring of patterns. They enable
to navigate through pattern languages by linking patterns with
each other. Some (c.f. [7] [20]) also enable to enrich links
between patterns by semantics to further ease the navigation.
Also, conceptual approaches exist that allow to connect a
pattern repository with a solution repository, which can be the
foundation to implement the concepts introduces in this work.
These concepts and repository prototypes can be combined with
our approach to develop sophisticated solution repositories.

Barzen and Leymann [21] present a general approach to
support the identification and authoring of patterns based on
concrete solutions. Their approach is based on research in the
domain of costumes in films, where they formalize costume
languages as pattern languages. Costumes are concrete solutions
that solve specific design problems of costume designers. They
enable to hark back to concrete solutions a pattern is evolved
from by keeping them connected. They also introduce the
terminus Solution Language as an ontology that describes types
of clothes and their relations in the form of metadata, as well
as instances of these types. This completely differs from the
concept of a Solution Language as described in this work.

Fehling et al. [22] present a method for identifying, authoring
and applying patterns. The method is decomposed into three
phases, whereby, in the pattern application phase, they describe
how abstract solutions of patterns can be refined towards
concrete implementations. To reduce the efforts to spend for
implementing patterns, they apply the concept of concrete
solutions by means of code repositories that contain reference
implementations of patterns. While our approach is designed
and detailed for organizing concrete solutions the argumentation
in their work is mainly driven by considerations about patterns
and pattern languages. Thus, the method does not introduce
how to systematically combine semantics and documentation
in order to organize concrete solutions for reuse, which is the
principal contribution of our work.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented the concept of Solution Languages
that allows to structure and organize concrete solutions, which
are implementations of patterns. We showed how Solution
Languages can be created and how they can support the

navigation through the solution space of pattern languages
based on semantic links, all targeting to ease and guide
pattern application. We further presented the concept of
Concrete Solution Aggregation Descriptors, which allows to
add arbitrary human-readable documentation to links between
concrete solutions. Besides these concepts, we showed that
concrete solutions addressing different aspects of a pattern
language can be organized into Solution Languages and linked
to their respective patterns. Finally, the generality of the
presented concepts is shown via comprehensive application
scenarios in the domains of cloud application architecture,
cloud management, and costumes in films. While the first two
show the plurality of concrete solutions and Solution Languages,
especially, the application to the domain of costumes in films
provide evidence that Solution Languages are not bound to
the domain of IT but can also be used to ease and guide the
application and combination of concrete solutions in general.

In future work, we are going to conduct research on how
to analyze Solution Languages in order to derive new pattern
candidates based on Concrete Solution Aggregation Descriptors
annotated to links between concrete solutions, but also on the
question if a Solution Language can indicate new patterns in
a pattern language, for instance, in the case if links between
concrete solutions are missing or if aggregation documentation
cannot be clearly authored. We are also going to apply the
concept of Solution Languages to domains besides cloud
computing, e.g., to the emerging field of the Internet of Things.
Finally, we are going to develop an algorithm in order to
automate the selection of suitable concrete solution paths on
the basis of a selected sequence of patterns and additional user
constraints. This automation approach for selectiing concrete
solutions will also make it possible to evaluate the concept of
solution languages experimentally via runtime mesasurements.

ACKNOWLEDGMENT

This work is partially funded by the BMWi project SePiA.Pro
(01MD16013F) as part of the Smart Service World.

REFERENCES

[1] M. Falkenthal and F. Leymann, “Easing Pattern Application by Means of
Solution Languages,” in Proceedings of the 9th International Conferences
on Pervasive Patterns and Applications. Xpert Publishing Services
(XPS), 2017, pp. 58–64.

[2] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language: towns,
buildings, construction. New York: Oxford University Press, 1977.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Abstraction and reuse of objectoriented design,” in European Conference
on Object-Oriented Programming, 1993, pp. 406–431.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and P. Stal,
Pattern-oriented software architecture: A system of patterns, 1996, vol. 1.

[5] M. van Welie and G. C. van der Veer, “Pattern Languages in Interaction
Design : Structure and Organization,” in Human-Computer Interaction
’03: IFIP TC13 International Conference on Human-Computer Interac-
tion. IOS Press, 2003, pp. 527–534.

[6] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, And Deploying Messaging Systems. Addison-Wesley, 2004.

[7] R. Reiners, “An Evolving Pattern Library for Collaborative Project
Documentation,” PhD Thesis, RWTH Aachen University, 2013.

[8] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp, F. Leymann, and
J. Wettinger, “Declarative vs. Imperative: Two Modeling Patterns for
the Automated Deployment of Applications,” in Proceedings of the
9th International Conferences on Pervasive Patterns and Applications.
Xpert Publishing Services (XPS), 2017, pp. 22–27.

[9] L. Reinurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of things patterns,” in Proceedings of the 21th European
Conference on Pattern Languages of Programs, 2016.

[10] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of Things Patterns for Devices,” in Proceedings of the 9th

International Conferences on Pervasive Patterns and Applications. Xpert
Publishing Services (XPS), 2017, pp. 117–126.

[11] T. Iba and T. Miyake, “Learning patterns: a pattern language for creative
learners II,” in Proceedings of the 1st Asian Conference on Pattern
Languages of Programs (AsianPLoP 2010). ACM Press, 2010, pp.
I–41—-I–58.

[12] T. Furukawazono, I. Studies, S. Seshimo, I. Studies, D. Muramatsu, and
T. Iba, “Survival Language : A Pattern Language for Surviving Earth-
quakes,” in Proceedings of the 20th Conference on Pattern Languages
of Programs. ACM, 2013, p. Article No. 30.

[13] J. Barzen et al., “The vision for MUSE4Music,” Computer Science -
Research and Development, vol. 22, no. 74, 2016, pp. 1–6.

[14] K. Mullet, “Structuring pattern languages to facilitate design.
chi2002 patterns in practice: A workshop for ui designers,”
2002. [Online]. Available: https://www.semanticscholar.org/
paper/Structuring-Pattern-Languages-to-Facilitate-Design-Mullet/
2fa5e4c25eea30687605115649191cd009a8f33c

[15] M. Falkenthal et al., “Leveraging pattern application via pattern
refinement,” in Proceedings of the International Conference on Pursuit
of Pattern Languages for Societal Change. epubli GmbH, pp. 38–61.

[16] M. Falkenthal, J. Barzen, U. Breitenbuecher, C. Fehling, and F. Leymann,
“From Pattern Languages to Solution Implementations,” in Proceedings of
the 6th International Conferences on Pervasive Patterns and Applications,
2014, pp. 12–21.

[17] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann,
“Efficient Pattern Application : Validating the Concept of Solution
Implementations in Different Domains,” International Journal On
Advances in Software, vol. 7, no. 3&4, 2014, pp. 710–726.

[18] G. Meszaros and J. Doble, “A Pattern Language for Pattern Writing,”
in Pattern Languages of Program Design 3. Addison-Wesley, 1997, ch.
A Pattern Language for Pattern Writing, pp. 529–574.

[19] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, Aug. 1977.

[20] C. Fehling, J. Barzen, M. Falkenthal, and F. Leymann, “PatternPedia
Collaborative Pattern Identification and Authoring,” in Pursuit of Pattern
Languages for Societal Change - The Workshop 2014: Designing Lively
Scenarios With the Pattern Approach of Christopher Alexander. epubli
GmbH, 2015, pp. 252–284.

[21] J. Barzen and F. Leymann, “Costume Languages as Pattern Languages,”
in Pursuit of Pattern Languages for Societal Change - The Workshop
2014: Designing Lively Scenarios With the Pattern Approach of
Christopher Alexander, 2015, pp. 88–117.

[22] C. Fehling, J. Barzen, U. Breitenbücher, and F. Leymann, “A Process
for Pattern Identification, Authoring, and Application,” in Proceedings
of the 19th European Conference on Pattern Languages of Programs,
2015, article no. 4.

[23] U. Breitenbücher et al., “Policy-Aware Provisioning and Management
of Cloud Applications,” International Journal On Advances in Security,
vol. 7, no. 1 & 2, 2014, pp. 15–36.

[24] U. Zdun, “Systematic pattern selection using pattern language grammars
and design space analysis,” Software: Practice and Experience, vol. 37,
no. 9, jul 2007, pp. 983–1016.

[25] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Software
Architecture: On Patterns and Pattern Languages. Wiley & Sons, 2007,
vol. 5.

[26] M. Falkenthal et al., “Pattern research in the digital humanities: how
data mining techniques support the identification of costume patterns,”
Computer Science - Research and Development, vol. 22, no. 74, 2016.

[27] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, 2014.

[28] Amazon, “Amazon Web Services,” 2017. [Online]. Available:
http://aws.amazon.com/

[29] ——, “Amazon Cloud Formation,” 2017. [Online]. Available:
https://aws.amazon.com/cloudformation

[30] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2013.

[31] Amazon, “Amazon Elastic Compute Cloud,” 2017. [Online]. Available:
https://aws.amazon.com/ec2

[32] Microsoft, “Microsoft Azure Virtual Machines,” 2017. [Online].
Available: https://azure.microsoft.com/en-us/services/virtual-machines

[33] VMWare, Inc, “Vmware vsphere,” 2017. [Online]. Available:
https://www.vmware.com/products/vsphere.html

[34] OpenStack Project, “Openstack,” 2017. [Online]. Available: https:
//www.openstack.org

[35] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable Cloud
Services Using TOSCA,” IEEE Internet Computing, vol. 16, no. 03,
May 2012, pp. 80–85.

[36] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA - A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp.
692–695.

[37] Node.js Foundation, “Express,” 2017. [Online]. Available: https:
//expressjs.com

[38] ——, “Node.js,” 2017. [Online]. Available: https://nodejs.org/en
[39] Canonical Ltd, “Ubuntu,” 2017. [Online]. Available: https://www.ubuntu.

com
[40] redislabs, “Redis,” 2017. [Online]. Available: https://redis.io
[41] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A

Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[42] M. Zimmermann, U. Breitenbücher, M. Falkenthal, F. Leymann, and
K. Saatkamp, “Standards-based Function Shipping How to use TOSCA
for Shipping and Executing Data Analytics Software in Remote
Manufacturing Environments,” in Proceedings of the 21st International
Enterprise Distributed Object Computing Conference. IEEE, 2017, in
press.

[43] P. Hirmer, U. Breitenbücher, T. Binz, and F. Leymann, “Automatic
Topology Completion of TOSCA-based Cloud Applications,” in Lecture
Notes in Informatics - Informatik 2014, 2014, pp. 247–258.

[44] D. Schumm, J. Barzen, F. Leymann, and L. Ellrich, “A Pattern Language
for Costumes in Films,” in Proceedings of the 17th European Conference
on Pattern Languages of Programs, 2012, article no. 7.

[45] Wikimedia Foundation, “MediaWiki,” 2017. [Online]. Available:
https://www.mediawiki.org/

[46] M. Krötzsch, “Semantic MediaWiki,” 2017. [Online]. Available:
https://www.semantic-mediawiki.org/

[47] R. Reiners, M. Falkenthal, D. Jugel, and A. Zimmermann, “Requirements
for a Collaborative Formulation Process of Evolutionary Patterns,” in
Proceedings of the 18th European Conference on Pattern Languages of
Programs, 2013, article no. 16.

[48] U. van Heesch, “Open Pattern Repository,” 2009. [Online]. Available:
http://www.cs.rug.nl/search/ArchPatn/OpenPatternRepository

All links were last accessed on December, 1st 2017.

https://www.semanticscholar.org/paper/Structuring-Pattern-Languages-to-Facilitate-Design-Mullet/2fa5e4c25eea30687605115649191cd009a8f33c
https://www.semanticscholar.org/paper/Structuring-Pattern-Languages-to-Facilitate-Design-Mullet/2fa5e4c25eea30687605115649191cd009a8f33c
https://www.semanticscholar.org/paper/Structuring-Pattern-Languages-to-Facilitate-Design-Mullet/2fa5e4c25eea30687605115649191cd009a8f33c
http://aws.amazon.com/
https://aws.amazon.com/cloudformation
https://aws.amazon.com/ec2
https://azure.microsoft.com/en-us/services/virtual-machines
https://www.vmware.com/products/vsphere.html
https://www.openstack.org
https://www.openstack.org
https://expressjs.com
https://expressjs.com
https://nodejs.org/en
https://www.ubuntu.com
https://www.ubuntu.com
https://redis.io
https://www.mediawiki.org/
https://www.semantic-mediawiki.org/
http://www.cs.rug.nl/search/ArchPatn/OpenPatternRepository

